哪个牌子智能手表电视支持2.4.和5G双苹信号

原标题:一篇文章带你看懂5G网络(接入网+承载网+核心网)

前一段时间自己一直在做某市的5G试点项目对5G的无线接入网相关技术有了更深入的认识。因此希望通过无线接叺网为线索(行话叫锚点),帮大家梳理一下无线侧接入网+承载网+核心网的架构这里以接入网为主,其他两个网络的很多技术细节由于筆者研究的并不足够深入因此以帮助大家入门为主。

在我们正式讲解之前我想通过这张网络简图帮助大家认识一下全网的网络架构,通过对全网架构的了解将方便您对后面每一块网络细节的理解。

这张图分为左右两部分右边为无线侧网络架构,左边为固定侧网络架構

无线侧:手机或者集团客户通过基站接入到无线接入网,在接入网侧可以通过RTN或者IPRAN或者PTN解决方案来解决将信号传递给BSC/RNC。在将信号传遞给核心网其中核心网内部的网元通过IP承载网来承载。

固网侧:家客和集客通过接入网接入接入网主要是GPON,包括ONT、ODN、OLT信号从接入网絀来后进入城域网,城域网又可以分为接入层、汇聚层和核心层BRAS为城域网的入口,主要作用是认证、鉴定、计费信号从城域网走出来後到达骨干网,在骨干网处又可以分为接入层和核心层。其中移动叫CMNET、电信叫169、联通叫163。

固网侧和无线侧之间可以通过光纤进行传递远距离传递主要是有波分产品来承担,波分产品主要是通过WDM+SDH的升级版来实现对大量信号的承载OTN是一种信号封装协议,通过这种信号封裝可以更好的在波分系统中传递

最后信号要通过防火墙到达INTERNET,防火墙主要就是一个NAT来实现一个地址的转换。这就是整个网络的架构

看完宏观的架构,让我们深入进每个部分去深入解读一下吧。

由于我们的手机打电话或者上网时信号首先抵达的就是无线接入网,因此这里我们从无线接入网开始谈起

首先大家看一下这个简化版的移动通信架构图:

简单地讲,就是把所有的手机终端都接入到通信网絡中的网络。

大家耳熟能详的基站(BaseStation)就是属于无线接入网(RAN)

虽然我们从1G开始历经2G、3G,一路走到4G号称是技术飞速演进,但整个通信网络的逻辑架构一直都是:手机接入网→承载网→核心网→承载网→接入网→手机

通信过程的本质就是编码解码、调制解调、加密解密。

要做的事情就这么多各种设备各司其职,完成这些事情

通信标准更新换代,无非是设备改个名字或者挪个位置,功能夲质并没有变化

基站系统,乃至整个无线接入网系统亦是如此。

一个基站通常包括BBU(主要负责信号调制)、RRU(主要负责射频处理),馈线(连接RRU和天线)天线(主要负责线缆上导行波和空气中空间波之间的转换)。

在最早期的时候BBU,RRU和供电单元等设备是打包塞茬一个柜子或一个机房里的。

后来慢慢开始发生变化。

怎么变化呢通信砖家们把它们拆分了。

首先就是把RRU和BBU先给拆分了。

硬件上不洅放在一起RRU通常会挂在机房的墙上。

BBU有时候挂墙不过大部分时候是在机柜里。

再到后来RRU不再放在室内,而是被搬到了天线的身边(所谓的“RRU拉远”)也就是分布式基站DBS3900,我们的余承东总裁当年在圣无线的时候就是负责这方面变革的专家该产品一出解决了欧洲运营商的刚需,为打开欧洲市场立下了汗马功劳

这样,我们的RAN就变成了D-RAN也就是Distributed RAN(分布式无线接入网)。

一方面大大缩短了RRU和天线之间馈線的长度,可以减少信号损耗也可以降低馈线的成本。

另一方面可以让网络规划更加灵活。毕竟RRU加天线比较小想怎么放,就怎么放

说到这里,请大家注意:通信网络的发展演进无非就是两个驱动力,一是为了更高的性能二是为了更低的成本

有时候成本比性能哽加重要如果一项技术需要花很多钱,但是带来的回报少于付出它就很难获得广泛应用。

RAN的演进一定程度上就是成本压力带来的结果。

D-RAN的架构下运营商仍然要承担非常巨大的成本。因为为了摆放BBU和相关的配套设备(电源、空调等)运营商还是需要租赁和建设很哆的室内机房或方舱。

大量的机房=大量的成本

于是运营商就想出了C-RAN这个解决方案。

C-RAN意思是Centralized RAN集中化无线接入网这个C,不仅代表集中囮还代表了别的意思:

除了RRU拉远之外,它把BBU全部都集中关押起来了关在哪了?中心机房(COCentral Office)。

这一大堆BBU就变成一个BBU基带池。

C-RAN这样莋非常有效地解决了前文所说的成本问题。

可能在没有接触一线业务的时候我们总以为设备运行后,运营商大量的前都用到了网络设備的维护中但通过前期的勘测,我才了解到运营商支持最大的成本不是通信设备维护,也不是雇佣维护人员而是电费!

在整个移动通信网络中,基站的能耗占比大约是……

在基站里面空调的能耗占比大约是……

传统方式机房的功耗分析

采用C-RAN之后,通过集中化的方式可以极大减少基站机房数量,减少配套设备(特别是空调)的能耗

若干小机房,都进了大机房

机房少了租金就少了,维护费用也少叻人工费用也跟着减少了。这笔开支节省对饱受经营压力之苦的运营商来说,简直是久旱逢甘霖

另外,拉远之后的RRU搭配天线可以咹装在离用户更近距离的位置。距离近了发射功率就低了。

低的发射功率意味着用户终端电池寿命的延长无线接入网络功耗的降低說白了,你手机会更省电待机时间会更长,运营商那边也更省电、省钱!

更重要一点除了运营商可以省钱之外,采用C-RAN也会带来很大的社会效益减少大量的碳排放(CO2)。

此外分散的BBU变成BBU基带池之后,更强大了可以统一管理和调度,资源调配更加灵活!

C-RAN下基站实际仩是“不见了”,所有的实体基站变成了虚拟基站

所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息。强化的协作关系使得联合调度得以实现。小区之间的干扰就变成了小区之间的协作(CoMP),大幅提高频谱使用效率也提升了用户感知。

此外BBU基带池既然都在CO(中心机房),那么就可以对它们进行虚拟化了!

虚拟化,就是网元功能虚拟化(NFV)简单来说,以前BBU是专门的硬件设备非瑺昂贵,现在找个x86服务器,装个虚拟机(VMVirtual Machines),运行具备BBU功能的软件然后就能当BBU用啦!

这样又可以帮客户节省好多的经费,不过这项技术短期内主要还是应用于核心网的网元中前一段时间刷屏的亚马逊上销售的仅需每月90美元的核心网设备,就是利用这项核心技术具體的我们留到后面再说,这里让我们继续聚焦于接入网

正因为C-RAN这种集中化的方式会带来巨大的成本削减,所以受到运营商的欢迎和追捧。

到了5G时代接入网又发生了很大的变化。

在5G网络中接入网不再是由BBURRU天线这些东西组成了。而是被重构为以下3个功能实体:

CU:原BBU嘚非实时部分将分割出来重新定义为CU,负责处理非实时协议和服务

AAU:BBU的部分物理层处理功能与原RRU及无源天线合并为AAU。

DU:BBU的剩余功能重噺定义为DU负责处理物理层协议和实时服务。

简而言之CU和DU,以处理内容的实时性进行区分

如果还不太清楚,我们看一下下面这张图:

紸意在图中,EPC(就是4G核心网)被分为New Core(5GC5G核心网)和MEC(移动网络边界计算平台)两部分。MEC移动到和CU一起就是所谓的“下沉”(离基站哽近)。

之所以要BBU功能拆分核心网部分下沉根本原因,就是为了满足5G不同场景的需要

5G是一个“万金油”网络,除了网速快之外还囿很多的特点,例如时延低、支持海量连接支持高速移动中的手机,等等

不同场景下,对于网络的特性要求(网速、时延、连接数、能耗...)其实是不同的,有的甚至是矛盾的

例如,你看高清演唱会直播在乎的是画质,时效上整体延后几秒甚至十几秒,你是没感覺的而你远程驾驶,在乎的是时延时延超过10ms,都会严重影响安全

所以,把网络拆开、细化就是为了更灵活地应对场景需求。

说到這里就要提到5G的一个关键概念——「切片」

切片简单来说,就是把一张物理上的网络按应用场景划分为N张逻辑网络。不同的逻辑網络服务于不同场景。

不同的切片用于不同的场景

网络切片,可以优化网络资源分配实现最大成本效率,满足多元化要求

可以这麼理解,因为需求多样化所以要网络多样化;因为网络多样化,所以要切片;因为要切片所以网元要能灵活移动;因为网元灵活移动,所以网元之间的连接也要灵活变化

所以,才有了DU和CU这样的新架构

依据5G提出的标准,CU、DU、AAU可以采取分离或合设的方式所以,会出现哆种网络部署形态:

回传、中传、前传是不同实体之间的连接

上图所列网络部署形态,依次为:

① 与传统4G宏站一致CU与DU共硬件部署,构荿BBU单元

② DU部署在4G BBU机房,CU集中部署

③ DU集中部署,CU更高层次集中

④ CU与DU共站集中部署,类似4G的C-RAN方式

这些部署方式的选择,需要同时综合栲虑多种因素包括业务的传输需求(如带宽,时延等因素)、建设成本投入、维护难度等

举个例子,如果前传网络为理想传输(有钱光纤直接到天线那边),那么CU与DU可以部署在同一个集中点。如果前传网络为非理想传输(没钱没那么多光纤),DU可以采用分布式部署的方式

再例如,如果是车联网这样的低时延要求场景你的DU,就要想办法往前放(靠近AAU部署)你的MEC、边缘云,就要派上用场

好了,通过前面的讲解我们应该已经大体对5G接入网的概念有了一定程度地了解,那么接下来我们再来简单地谈一谈5G承载网

有同学就问,5G不僅仅只在接入网有变化在即将到来的5G时代,5G的承载网和传送网会是个什么样子会采用什么黑科技?

业界有一句话就是承载先行。这吔体现了承载网的重要性为什么说它重要呢?因为承载网是基础资源必须先于无线网部署到位。前面我们提到过5G的主要优点总结而訁,就三个:

  • 毫秒级的延迟:uRLLC
  • 百万级/k㎡的终端接入:mMTC

5G想要满足以上应用场景的要求承载网是必须要进行升级改造的。

注意!划重点啦!丅面这段文字很重要!

在5G网络中之所以要功能划分、网元下沉,根本原因就是为了满足不同场景的需要。前面再谈接入网的时候我們提到了前传、回传等概念说的就是承载网。因为承载网的作用就是把网元的数据传到另外一个网元上

这里我们再来具体看看,对于前、中、回传到底怎么个承载法。

首先看前传(AAU?DU)主要有三种方式:

第一种,光纤直连方式

每个AAU与DU全部采用光纤点到点直连组网,洳下图:

这就属于典型的“土豪”方式了实现起来很简单,但最大的问题是光纤资源占用很多随着5G基站、载频数量的急剧增加,对光纖的使用量也是激增

所以,光纤资源比较丰富的区域可以采用此方案。

第二种无源WDM方式

将彩光模块安装到AAU和DU上通过无源设备完荿WDM功能,利用一对或者一根光纤提供多个AAU到DU的连接如下图:

光复用传输链路中的光电转换器,也称为WDM波分光模块不同中心波长的光信號在同一根光纤中传输是不会互相干扰的,所以彩光模块实现将不同波长的光信号合成一路传输大大减少了链路成本。

采用无源WDM方式雖然节约了光纤资源,但是也存在着运维困难不易管理,故障定位较难等问题

第三种,有源WDM/OTN方式

在AAU站点和DU机房中配置相应的WDM/OTN设备,哆个前传信号通过WDM技术共享光纤资源如下图:

这种方案相比无源WDM方案,组网更加灵活(支持点对点和组环网)同时光纤资源消耗并没囿增加。

看完了前传我们再来看看中传(DU?CU)和回传(CU以上)

由于中传与回传对于承载网在带宽、组网灵活性、网络切片等方面需求昰基本一致的所以可以使用统一的承载方案。

利用分组增强型OTN设备组建中传网络回传部分继续使用现有IPRAN架构。

  • 端到端分组增强型OTN

中传與回传网络全部使用分组增强型OTN设备进行组网

这里我们仅仅对承载网做了最简单的讲解,至于承载网中采用的FlexE分片技术、减低时延的技術、SDN架构等等想了解的小伙伴建议自己查一查

最后对5G承载网做一下总结:

  • 架构:核心层采用Mesh组网,L3逐步下沉到接入层实现前传回传统┅。
  • 分片:支持网络FlexE分片
  • SDN:支持整网的SDN部署提供整网的智能手表动态管控。
  • 带宽:接入环达到50GE以上汇聚环达到200GE以上,核心层达到400GE

由於核心网是我认为最难的一块网络,涉及的产品非常多实话说我也还没有理解透,因此这里采用从2G到5G核心网演进的方式帮助大家初步叻解核心网。尤其会重点说一说马上进入5G时代了,我们的核心网究竟会变成什么样子

2G的核心网设备,是这样的:

大大宽宽的机柜有恏几层机框,然后每层机框插了很多的单板单板很薄很轻,面板是塑料的很容易坏。

我们来看看当时的网络架构图:

可以看出来组網非常简单,MSC就是核心网的最主要设备HLR、EIR和用户身份有关,用于鉴权

注意:之所以图上面写的是“MSC/VLR”,是因为VLR是一个功能实体但是粅理上,VLR和MSC是同一个硬件设备相当于一个设备实现了两个角色,所以画在一起HLR/AUC也是如此,HLR和AUC物理合一

后来,到了2.5G是的没错,2G和3G之間还有一个2.5G——就是GPRS。

在之前2G只能打电话发短信的基础上有了GPRS,就开始有了数据(上网)业务

于是,核心网有了大变化开始有了PS核心网。PSPacket Switch,分组交换包交换。

很快基站部分跟着变,2.5G到了3G网络结构变成了这样:

(为了简单,HLR等网元我就没画了)

到了3G阶段设備商的硬件平台进行彻底变革升级。

(单板比2G重而且面板都是金属的)

(主要是提供网线、时钟线、信号线接口)

大家不要小看了硬件岼台,实际上就像最开始华为的C&C08中兴的ZXJ10一样,设备商自家的很多不同业务的设备都是基于同一个硬件平台进行开发的。不可能每个設备都单独开发硬件平台既浪费时间和精力,又不利于生产和维护

稳定可靠且处理能力强大的硬件平台,是产品的基石

3G除了硬件变囮和网元变化之外,还有两个很重要的思路变化其中之一,就是IP化

以前是TDM电路,就是E1线中继电路。

IP化就是TCP/IP,以太网网线、光纤開始大量投入使用,设备的外部接口和内部通讯都开始围绕IP地址和端口号进行。

第二个思路变化就是分离。

具体来说就是网元设备嘚功能开始细化,不再是一个设备集成多个功能而是拆分开,各司其事

在3G阶段,是分离的第一步叫做承载和控制分离。

在通信系统裏面说白了,就两个(平)面用户面和控制面。如果不能理解两个面就无法理解通信系统。

用户面就是用户的实际业务数据,就昰你的语音数据视频流数据之类的。

而控制面是为了管理数据走向的信令、命令。

这两个面在通信设备内部,就相当于两个不同的系统

2G时代,用户面和控制面没有明显分开3G时代,把两个面进行了分离

(注意,基站里面的RNC没有了为了实现扁平化,功能一部分给叻核心网一部分给了eNodeB)

演进到4G核心网之前,硬件平台也提前升级了

华为的USN系列,开始启用ATCA/ETCA平台(后来MME就用了它)还有UGW平台(后面PGW和SGW鼡了它,PGW和SGW物理上是一体的)

在3G到4G的过程中,IMS出现了取代传统CS(也就是MSC那些),提供更强大的多媒体服务(语音、图片短信、视频电話等)IMS,使用的也主要是ATCA平台

前面所说的V3平台,实际上很像一个电脑有处理器(MP单板),有网卡(以太网接口卡光纤接口卡)。洏V4的ATCA平台更像一台电脑了,前面你也看到了名字就叫“先进电信计算平台”,也就是“电信服务器”嘛

确切说,ATCA里面的业务处理单板本身就是一台单板造型的“小型化电脑”,有处理器、内存、硬盘我们俗称“刀片”

ATCA业务处理板——“刀片”

(没找到中兴的呮能放个华为的)

既然都走到这一步,原来的专用硬件越做越像IT机房里面的x86通用服务器,那么不如干脆直接用x86服务器吧。

于是乎虚擬化时代,就到来了

说白了,硬件上直接采用HP、IBM等IT厂家的x86平台通用服务器(目前以刀片服务器为主,节约空间也够用)。

软件上設备商基于openstack这样的开源平台,开发自己的虚拟化平台把以前的核心网网元,“种植”在这个平台之上

网元功能软件与硬件实体资源分離

注意了,虚拟化平台不等于5G核心网也就是说,并不是只有5G才能用虚拟化平台也不是用了虚拟化平台,就是5G

按照惯例,设备商先在虛拟化平台部署4G核心网也就是,在为后面5G做准备提前实验。

硬件平台永远都会提前准备。

好了上面说了5G核心网的硬件平台,接下來我们仔细说说5G核心网的架构。

到了5G网络逻辑结构彻底改变了。

5G核心网采用的是SBA架构(Service Based Architecture,即基于服务的架构)名字比较好记,呵呵…

SBA架构基于云原生构架设计,借鉴了IT领域的“微服务”理念

把原来具有多个功能的整体,分拆为多个具有独自功能的个体每个个體,实现自己的微服务

这样的变化,会有一个明显的外部表现就是网元大量增加了。

红色虚线内为5G核心网

除了UPF之外都是控制面

这些網元看上去很多,实际上硬件都是在虚拟化平台里面虚拟出来的。这样一来非常容易扩容、缩容,也非常容易升级、割接相互之间鈈会造成太大影响(核心网工程师的福音)。

简而言之5G核心网就是模块化、软件化

5G核心网之所以要模块化还有一个主要原因,就是為了“切片”

很多人觉得“切片”很难,其实并非如此

切片,就是“多种人格”同一样东西,具有不同的特性以应对不同的场景,也有点像“瑞士军刀”

5G是一个天下一统的网络,通吃所有用户设计之初,就需要它应对各种需求

既然网络用途不同,当然要见招拆招以一个死板的固定网络结构去应对,肯定是不行的只有拆分成模块,灵活组队才能搞定。

例如在低时延的场景中(例如自动駕驶),核心网的部分功能就要更靠近用户,放在基站那边这就是“下沉”。

部分核心网功能“下沉”到了MEC

下沉不仅可以保证“低時延”,更能够节约成本所以,是5G的一个杀手锏

以上,就是从2G到5G核心网整个的演进过程和思路。并不难理解吧

简单概括,就是拆汾、拆分、再拆分软件、软件、更软件。

在将来核心网的硬件和IT行业的硬件一样。而核心网的软件就变成手机上面的app一样。

通过以仩的讲解希望对大家理解无线通信的网络架构有所帮助!

}

原标题:比Apple Watch还全面内置小爱的華米Amazfit智能手表手表真心

最近小米科技、云米科技轮番上市,引起了业内的震动实际上,在他们之前小米生态链公司华米科技在2月初已經赴美上市,作为小米生态链体系内第一家纽交所上市公司华米不仅是小米手环的制造商,也以独立品牌华米Amazfit的身份推出了饱受好评的智能手表手表、手环

在华米一口气推出799元的智能手表手表、699元的健康手环1S,以及一款号称全球智能手表可穿戴领域的第一颗人工智能手表芯片黄山1号之后笔者也完成了对Amazfit的体验与测评,在这里分享给大家

笔者此次拿到的Amaz?t智能手表手表为米白色版本,与包装相映成趣嘚组合不仅凸显出了运动气息,也将时尚美感提升到一定高度平时佩戴也不会“跌份”。

包装比较扎实一眼看上去有点卡西欧的错覺,实际上无论是表盘还是屏幕远比卡西欧这类电子表要出色

内部包装同样紧致,保证了手表的安全在配色上,除了目前上手体验的米白另有黑色和蓝色版本。

AMAZFIT智能手表手表的表圈正面仅设有四个红色刻度较为平直的线条并没有令其显得生硬,而是更具简约和内敛嘚气息红色刻度更是画龙点睛之笔。

表盘玻璃的位置相对于水平面要低一点点手表的外壳能够有效地保护手表玻璃,避免在使用NFC功能昰对表盘玻璃造成伤痕表盘屏幕达到为1.3英寸,直径大小约为43mm采用了AMOLED彩色屏幕,分辨率 360×360显示效果惊艳细腻。而且拥有康宁大猩猩箥璃与防指纹镀膜可以减少损伤几率并且降低指纹的残留,使用中可以感受到非常灵敏

手表的表带选择了硅胶材质,按照华米的说法官方在表带工艺上画了不少心思,使用了全新的Cleaning工艺这种工艺的好处在于能够让硅胶材质不易掉色,手感也会更加光滑笔者感觉是哽为柔软,长时间佩戴担心会变软另外,支持可更换多款配色表带设计不同的配色来满足你在不同心情、不同场合下对个性化的需求。

表身就只配备了一颗红色的长条形Home键而且还位于表盘的下方,不显山不露水但非常重要。在手表屏幕保持锁定时可以用于解锁,洏在AMAZFIT OS系统当中则可以作为返回/唤醒小爱同学的按键使用

AMAZFIT智能手表手表背面设计细节没有太大变化,仍采用四个金属触点式充电接口中間为新升级的PPG心率监测光学传感器,PPG心率监测装置位于手表背面与传统的ECG测量相比,PPG心率监测的好处在于不需要将手表强制按压于皮肤表面提升了佩戴舒适度与监测成功率。由于机身材质塑料不支持游泳、淋浴时佩戴,只支持日常表面防水

抛开手表外观,华米在这佽新品的表盘上也下了不少功夫表盘是智能手表手表和一般手表最大的区别之一,用户可以根据自己的喜好更换所以许多智能手表穿戴厂商都会在这方面做做文章。华米这次和著名设计工作室Territory Studio的艺术家们合作设计了三款表盘。不过我们拿到的这只手表没有那么多样式预计会在之后的更新中添加。

在初次使用时它需要与手机中的“Amzfit手表”App扫码配对进行激活。在操作逻辑上AMAZFIT智能手表手表通过侧面的HOME鍵解锁屏幕后,可通过滑动和触控进行操作在表盘页面左滑进入应用列表,上划呼出通知下滑呼出状态栏和快捷开关。

AMAZFIT智能手表手表提供了健康、心率、运动、睡眠、运动记录、电话、支付宝、卡包、米家、音乐、天气、闹钟、计时器、秒表、日程、指南针、喜马拉雅、搜狗地图、小米电视遥控器和设置共计20个功能

而在运动功能方面,它内置了跑步、健走、室内跑、椭圆机、登山等多种运动模式开啟运动后屏幕会实时显示时间、里程、步数以及实时心率等信息,1.3英寸的屏幕令信息显示的效率非常高

此外,由于AMAZFIT智能手表手表内置叻GPS+GLONASS双星定位系统因此即使在没有携带手机的情况下也能记录运动轨迹。

不过定位信号获取的速度相比手机要明显慢很多这也是这类產品的通病,有时会需要2-3分钟的时间来获得定位信号此后才能记录连续的定位信息。

据悉我国心血管病患人数达2.9亿,心血管病死亡占居民疾病死亡构成的40%而事实上,80%的心血管疾病都是可预防的而华米更加关注这块,通过24h全天心率记录功能来预防心脏病发生

PPG心率監测(PhotoPlethysmoGraphy光电容积脉搏波描记法),新一代技术大部分采用光电式技术心率监测精确性提升至98%。它即是通过反射而已,就是利用血液中透光率的脉动变化折算成电信号,对应就是心率当心脏收缩时外周血容量最多光吸收量也最大,检测到的光强度最小而在心脏舒张时,囸好相反检测到的光强度最大,使光接收器接收到的光强度随之呈脉动性变化它的好处是只要将手表戴在手腕上就能采集心率信息,铨天不间断地进行心率测量

Amaz?t智能手表手表此次搭载的AMAZFIT OS系统对使用者来说也很友好。首先是流畅度在双核1.2GHz处理器+512MB内存的驱动下,无论昰应用打开还是滑动切换的过程中都能够保证画面流畅。内置的4GB存储可以用于数据记录和歌曲的存放。

这套系统的基本操作逻辑是以滑动为主解锁手表的方式为按压机身按键(可在设置中开启双击亮屏),首页下拉即可进入快捷设置菜单(类似于手机的控制栏)这裏可以调节亮度、声音以及开启飞行模式等。

首页上滑即可进入通知栏手机端收到的所有信息都将在这里出现,在体验中有小部分被MIUI系统自动设为“不重要信息”的通知在AMAZFIT OS中依旧会推送,其余则会被拦截通知接收非常快速,几乎可以做到和手机同步推送如果不清楚現在是否可以正常接收信息,可以通过APP中的“通知测试”功能进行测试

语音交互方面,Amazfit智能手表手表内置AI语音助手小爱同学(需要手机網络支持蓝牙互通状态),用户只需要在点击一下Home键即可开启小爱同学可以通过语音查询天气、设定闹钟等,还接入了米家平台支歭操控11款不同种类的智能手表家居产品,包括电视遥控、电灯、空气净化器、插座、开关、扫地机器人、空调、电风扇等等后续智能手表家电种类以及品牌都会继续增加。可以理解为把小爱同学智能手表音箱的AI语音助手功能转移到了手表上。

续航方面AMAZFIT智能手表手表内置390mAh电池容量,充电时长约为2.5小时在不开启全天心率监测功能续航时间为5天左右,开启该功能后续航会在大约为2~3天以内

Amaz?t APP界面分为三栏,左侧为主显示菜单显示主要的健康信息,包括当天运动步数、心率监测结果与睡眠监测结果中间栏为运动(指开始跑步、骑行、登屾等项目后的运动记录)最右侧则为手表的设置与APP设置的相关选项。

在APP中打开“我的手表”即可对手表进行相关设置和状态的查看可以看到包括存储剩余空间、剩余电量、系统版本等信息。而表盘商城除了可以选择手表已有表盘外还可以支持在线下载和图片背景定制。

叧外两个非常实用的功能一个是音乐导入一个是小部件应用管理。前者可以直接将手机音乐导入手表当中在运动时只需要将Amaz?t智能手表手表与蓝牙耳机相连即可在没有网络接入的情况下听到动感的音乐了,但是目前音乐部分还不支持歌曲筛选因此有一些系统音也被检索出来,相信随着官方的APP更新会体验更好

小部件应用管理可以调整Amaz?t智能手表手表上显示的应用和应用显示的顺序,我个人习惯是将运動、音乐、天气调整至最前以便随时调用算是一个很人性化的设计。需要注意的是如果想要对运动、天气等应用进行设置,也需要通過Amaz?t APP进行操作

Amaz?t智能手表手表支持11项运动模式的监测,只需在运动时打开手表上的“运动”APP即可开始选择并记录运动状态而且小爱同學也支持打开运动应用。这里我们以室内骑行为例运动结束后,手机APP和手表均会显示此次运动的详细信息包括运动时长、心率变化等。

同样Amaz?t智能手表手表也支持睡眠监测,通过在睡眠时测量你的心率感知你的运动情况来分析你的睡眠质量在APP显示中,会详细给出深喥、浅度睡眠时长以及入睡和醒来的时间

我们还测试了它的续航时间,将手表充满电打开所有通知功能,期间没有进行运动记录全忝候佩戴了将近5天时间,手表还剩余7%的电量看来官方的5天时间续航是可以达到的。

AMAZFIT智能手表手表内置了NFC芯片支持目前全国上下超165个城市、20000余条公交、地铁线路的公交卡刷卡,对于通勤组来说大大的方便了大家日常刷卡。不仅仅是公交卡后续AMAZFIT智能手表手表还将升级支歭NFC门禁卡模拟以及NFC芯片银行卡的刷卡支付,让人们可以放心的把钱包丢在家中动动手腕就能轻松支付。

}

我要回帖

更多关于 平安智能 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信