什么叫做单摆等时性性

什么是在我国古代又叫刻漏,是根据滴水的等时姓原理来计时的工具_百度知道
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。
什么是在我国古代又叫刻漏,是根据滴水的等时姓原理来计时的工具
什么是在我国古代又叫刻漏,是根据滴水的等时姓原理来计时的工具
我有更好的答案
自公元85年左右,浮子上装有漏箭的受水型漏壶逐渐流行,甚至到处使用(水钟)在我国古代又叫“刻漏”,是根据滴水的等时性原理来计时的工具。 水钟在中国又叫做“刻漏”,“漏壶”。中国的水钟,最先是泄水型,后来泄水型与受水型同时并用或两者合一。根据等时性原理滴水记时有两种方法,一种是利用特殊容器记录把水漏完的时间(泄水型),另一种是底部不开口的容器,记录它用多少时间把水装满(受水型)
采纳率:74%
来自团队:
那叫沙漏吧
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包当前位置:
>>>发现摆的等时性的科学家是()A.牛顿B.阿基米德C.安培D.伽利略-物理..
发现摆的等时性的科学家是(  )A.牛顿B.阿基米德C.安培D.伽利略
题型:单选题难度:中档来源:不详
意大利科学家伽利略对教堂中吊灯的摆动产生了浓厚的兴趣,于是自己用铁块制成了一个摆,通过实验发现:不论摆动的幅度大些还是小些,完成一次摆动的时间是相等的.这在物理学中称为摆的等时性原理.故选D.
马上分享给同学
据魔方格专家权威分析,试题“发现摆的等时性的科学家是()A.牛顿B.阿基米德C.安培D.伽利略-物理..”主要考查你对&&物理常识&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
初中物理课本之外的物理常识:比如:生活中的物理知识(厨房中的物理知识、与电学有关的现象等等),有关物理的发展史、对物理作出卓越贡献的人物等等。生活中有关的物理常识:一、与电学知识有关的现象  1、电饭堡煮饭、电炒锅煮菜、电水壶烧开水是利用电能转化为内能,都是利用热传递煮饭、煮菜、烧开水的。  2、排气扇(抽油烟机)利用电能转化为机械能,利用空气对流进行空气变换。  3、电饭煲、电炒锅、电水壶的三脚插头,插入三孔插座,防止用电器漏电和触电事故的发生。  4、微波炉加热均匀,热效率高,卫生无污染。加热原理是利用电能转化为电磁能,再将电磁能转化为内能。  5、厨房中的电灯,利用电流的热效应工作,将电能转化为内能和光能。  6、厨房的炉灶(蜂窝煤灶,液化气灶,煤灶,柴灶)是将化学能转化为内能,即燃料燃烧放出热量。二、与力学知识有关的现象  1、电水壶的壶嘴与壶肚构成连通器,水面总是相平的。  2、菜刀的刀刃薄是为了减小受力面积,增大压强。 3、菜刀的刀刃有油,为的是在切菜时,使接触面光滑,减小摩擦。  4、菜刀柄、锅铲柄、电水壶把手有凸凹花纹,使接触面粗糙,增大摩擦。 5、火铲送煤时,是利用煤的惯性将煤送入火炉。 6、往保温瓶里倒开水,根据声音知水量高低。由于水量增多,空气柱的长度减小,振动频率增大,音调升高。  7、磨菜刀时要不断浇水,是因为菜刀与石头摩擦做功产生热使刀的内能增加,温度升高,刀口硬度变小,刀口不利;浇水是利用热传递使菜刀内能减小,温度降低,不会升至过高。三、三、与热学知识有关的现象 (一)与热学中的热膨胀和热传递有关的现象  1、使用炉灶烧水或炒菜,要使锅底放在火苗的外焰,不要让锅底压住火头,可使锅的温度升高快,是因为火苗的外焰温度高。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,是因为木料是热的不良导体,以便在烹任过程中不烫手。  3、炉灶上方安装排风扇,是为了加快空气对流,使厨房油烟及时排出去,避免污染空间。  4、滚烫的砂锅放在湿地上易破裂。这是因为砂锅是热的不良导体,烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。 5、往保温瓶灌开水时,不灌满能更好地保温。因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。 6、炒菜主要是利用热传导方式传热,煮饭、烧水等主要是利用对流方式传热的。  7、冬季从保温瓶里倒出一些开水,盖紧瓶塞时,常会看到瓶塞马上跳一下。这是因为随着开水倒出,进入一些冷空气,瓶塞塞紧后,进入的冷空气受热很快膨胀,压强增大,从而推开瓶塞。  8、冬季刚出锅的热汤,看到汤面没有热气,好像汤不烫,但喝起来却很烫,是因为汤面上有一层油阻碍了汤内热量散失(水分蒸发)。  9、冬天或气温很低时,往玻璃杯中倒入沸水,应当先用少量的沸水预热一下杯子,以防止玻璃杯内外温差过大,内壁热膨胀受到外壁阻碍产生力,致使杯破裂。  10、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 (二)与物体状态变化有关的现象  1、液化气是在常温下用压缩体积的方法使气体液化再装入钢罐中的;使用时,通过减压阀,液化气的压强降低,由液态变为气态,进入灶中燃烧。  2、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏。若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。  3、烧水或煮食物时,喷出的水蒸气比热水、热汤烫伤更严重。因为水蒸气变成同温度的热水、热汤时要放出大量的热量(液化热)。  4、用砂锅煮食物,食物煮好后,让砂锅离开火炉,食物将在锅内继续沸腾一会儿。这是因为砂锅离开火炉时,砂锅底的温度高于100℃,而锅内食物为100℃,离开火炉后,锅内食物能从锅底吸收热量,继续沸腾,直到锅底的温度降为100℃为止。  5、用高压锅煮食物熟得快些。主要是增大了锅内气压,提高了水的沸点,即提高了煮食物的温度。  6、夏天自来水管壁大量“出汗”,常是下雨的征兆。自来水管“出汗”并不是管内的水渗漏,而是自来水管大都埋在地下,水的温度较低,空气中的水蒸气接触水管,就会放出热量液化成小水滴附在外壁上。如果管壁大量“出汗”,说明空气中水蒸气含量较高,湿度较大,这正是下雨的前兆。  7、煮食物并不是火越旺越快。因为水沸腾后温度不变,即使再加大火力,也不能提高水温,结果只能加快水的汽化,使锅内水蒸发变干,浪费燃料。正确方法是用大火把锅内水烧开后,用小火保持水沸腾就行了。  8、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 9、油炸食物时,溅入水滴会听到“叭、叭”的响声,并溅出油来。这是因为水的沸点比油低,水的密度比油大,溅到油中的水滴沉到油底迅速升温沸腾,产生的气泡上升到油面破裂而发出响声。  10、当锅烧得温度较高时,洒点水在锅内,就发出“吱、吱”的声音,并冒出大量的“白气”。这是因为水先迅速汽化后又液化,并发出“吱、吱”的响声。  11、当汤煮沸要溢出锅时,迅速向锅内加冷水或扬(舀)起汤,可使汤的温度降至沸点以下。加冷水,冷水温度低于沸腾的汤的温度,混合后,冷水吸热,汤放热。把汤扬起的过程中,由于空气比汤温度低,汤放出热,温度降低,倒入锅内后,它又从沸汤中吸热,使锅中汤温度降低。 (三)与热学中的分子热运动有关的现象  1、腌菜往往要半月才会变咸,而炒菜时加盐几分钟就变咸了,这是因为温度越高,盐的离子运动越快的缘故。  2、长期堆煤的墙角处,若用小刀从墙上刮去一薄层,可看见里面呈黑色,这是因为分子永不停息地做无规则的运动,在长期堆煤的墙角处,由于煤分子扩散到墙内,所以刮去一层,仍可看到里面呈黑色。 物理学史常识:1、胡克:英国物理学家;发现了胡克定律(F弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。13、安培:法国科学家;提出了著名的分子电流假说。14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素
发现相似题
与“发现摆的等时性的科学家是()A.牛顿B.阿基米德C.安培D.伽利略-物理..”考查相似的试题有:
28143519236524872025049875303203597当前位置: &>&&>&&>& > 正文
什么是控制变量法及练习题
一、摆的故事
当我们欣喜地开始科学之旅时,看到的第一个故事就是意大利科学家伽利略研究摆动的故事:
伽利略在著名的比萨斜塔旁的一个教堂内做弥撒,看到教堂顶端的吊灯有节律的摆动,且发现吊灯来回摆动一次的时间似乎相等?科学家的敏锐使他对此发生了浓厚的兴趣,于是他用脉搏(当时没有钟表)这种“随身携带”的简单仪器来证实这个猜想。
为了进一步证实他的猜想是否正确的,回到实验室,他选择了铁块、绳子、脉搏继续做实验。
首先保持摆球质量、摆动幅度不变,只改变摆线长度,发现摆线长时,摆动周期也长,摆线短时,周期也短。
通过分析,他得出第一个结论:当摆球质量、摆动幅度不变时,摆动周期和摆线长度有关,摆线长度越长、周期越长,摆线长度越短、周期越短。
接着,保持摆线长度和摆动幅度不变,只改变摆球质量。发现无论质量大小,摆球摆动的周期相同。
他得出第二个结论:当摆线长度和摆动幅度不变时,改变摆球质量,摆的摆动周期和摆球质量无关。
第三次,保持摆线长度和摆球质量不变,只改变摆动幅度,发现摆的周期和摆动幅度无关。
得出第三个结论:当摆线长度和摆球质量不变时,摆的周期和摆动幅度无关
他通过综合分析得出:当单摆来回摆动时,摆动周期只和摆线长度有关,和摆球质量、摆动幅度无关,且摆线越长、周期越长;摆线越短、周期越短。
伽利略通过上述方法提出了摆的“等时性原理”:“不论摆动的幅度大些还是小些,摆球完成一次摆动的时间是相同的。
这种“每次只让一个因素改变,保持其他因素不变”的研究摆动的周期与哪些因素有关、且有什么关系的研究方法就是控制变量法
二、关于控制变量法:
大家知道,一个同学的学习成绩的好坏,除了跟智力因素有关,还跟学习方法、学习环境等诸多因素有关。同样,影响物理学研究对象的因素在许多情况下不是单一的,而是多种因素相互交错、共同起作用的。要想精确地把握研究对象的各种特性,弄清事物变化的原因和规律,单靠自然条件下整体观察研究对象是远远不够的。
为了弄清物理变化的原因和规律,必须设法把其中的一个和几个因素用人为的方法控制起来,假定这些因素不变,造成特定的、便于观察的条件,把多因素的问题转变为多个单因素的问题,分别加以研究,最后综合解决,这类方法叫控制变量法,是物理学中一种常用的、科学的研究方法,其实任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。
这种方法在学校生活中时常遇见。在学校田径运动会上,我们常常为自己班的同学跑在最前面而欢呼:从运动员起跑,到我们欢呼时,运动员们跑步的时间是相同的,跑在最前面的运动员跑得路程长,我们说他跑得快,这是比较相同时间内通过的路程,即将时间控制相等,谁跑得路程长,谁就跑得快。而裁判只看记录的时间。运动员跑相同的路程,谁花的时间少,谁就跑得快。即比较通过相同路程所用时间,将路程控制相等,跑步时间短的跑得快。
三、例题选讲:
在应用控制变量法实验和解题时,关键是首先要说清楚不变的因素有哪些,然后再说清楚当研究的因素改变时,被研究的物理量在怎样发生变化。
例1.&学习吉它时,小华发现琴弦发出声音的音调高低受各种因素影响,他决定对此进行探究。经过和同学们讨论,提出了以下猜想:
猜想1:琴弦发出声音的音调高低,可能与琴弦的横截面积有关;
猜想2:琴弦发出声音的音调高低,可能与琴弦的长短有关;
猜想3:琴弦发出声音的音调高低,可能与琴弦的材料有关。
为了验证上述猜想是否正确,他们找到了下表所列9种规格的琴弦。
因为音调的高低取决于声源振动的频率,于是他们又借来一个能够测量振动频率的仪器进行实验。
(1)为了验证猜想1,应选用编号为_____、_____、_____的琴弦进行实验。
为了验证猜想2,应选用编号为____、____、_____的琴弦进行实验。
表中有的材料规格还没有填全,为了验证猜想3,必须知道该项内容。请你在表中填上所缺数据。
(2)随着实验的进行,小华又觉得琴弦音调的高低,可能还与琴弦的松紧有关?为了验证这一猜想,必须进行的操作是:____________________________。
解析与答:影响琴弦发出声音音调的因素有很多,为了研究琴弦发出声音的音调是否与琴弦的横截面积有关系,应该将其他因素都控制起来,让琴弦的材料和长度相同,选择横截面积不同的琴弦进行研究,故选ABC;为了研究琴弦发出声音的音调是否与琴弦长短有关,需要控制起来保持不变的是材料和横截面积,选择长度不等的琴弦进行研究,故选ADF;为了研究琴弦发出声音的音调是否与琴弦的材料有关,其他两个因素---材料的长度和横截面积应该保持一定,故选择长度和横截面积相同而仅仅是材料不同的琴弦进行研究,而表中只有H与I为尼龙材料,两者必选一根,而表中与此对应的长度和横截面积都相同的琴弦没有,所以在表中空白处选填与H或I相同的数据,任选一组都可以,填80,1.02或100,1.02均可。
为了研究琴弦音调是否与琴弦的松紧有关系,需要控制材料、长度和横截面积,只能让琴弦的松紧程度不同,因此:选取一根琴弦,使它绷紧的程度不同,然后使它在振幅相同的条件下拨动几次,分别测出它的振动频率,倾听发声的高低,比较得出结论。
[点击关键词在7C教育资源网搜索更多关于的教学资源]
■文章录入:admin&&&&责任编辑:admin_hys&
上一篇文章:
下一篇文章:钟表走时误差 - 中国百科网
您当前的位置: -&
-& 文章内容:
钟表走时误差
的变形,从而使游丝的恢复力矩不能与摆轮的角位移保持线性关系,引起了等时性误差。当摆轮轴心连接游丝外、内端的两根径向线彼此垂直时,对等时性无影响;当两根径向线处在同一直线上时,对等时性影响最大。 ⑤游丝安装误差:游丝在安装过程中容易产生两种误差,一种是偏心,即游丝的几何中心与摆轴轴心不重合;另一种是在外桩方向的径向安装误差,即固定游丝外端的外桩至摆轴轴心的距离不等于外桩孔至摆轴孔中心的距离。当存在以上任何一种误差时,游丝在工作中都会在其长度上的各个元段产生不均匀的变形,破坏游丝恢复力矩与摆轮角位移之间的线性关系,从而引起等时性误差。 ⑥游丝转动惯量:在摆轮游丝调速组件中,游丝本身的转动惯量比摆轮的小很多,但也是整个振动系统转动惯量的组成部分。游丝工作时,由于存在扩展与收缩现象,其转动惯量将随着摆轮的角位移而变化。由于振动周期与转动惯量的平方根成正比,故当振幅变化引起游丝转动惯量变化时,振动周期也发生变化,引起等时性误差。游丝转动惯量对等时性误差的影响不属于通常的非线性力矩干扰,而是因振幅变化直接产生的。 ⑦游丝材料:游丝的恢复力矩与其弹性模数成正比,而游丝材料的弹性模数是与所受到的应力有关的。随着摆轮振幅的变化,游丝由于扩展与收缩变形所产生的应力也发生了变化,这就导致恢复力矩的变化,使恢复力矩与摆轮角位移之间不能保持线性关系,从而引起等时性误差。 弹性模数与应力之间的关系复杂,难以用公式准确地表达。从定性上说,当应力逐渐增加时,弹性模数先是减小,到一定程度后又回升,然后渐趋平缓。通常,由于应力引起的弹性模数的相对变化值约在10(数量级。 ⑧擒纵机构:在钟表机构中,为了维持摆轮游丝调速组件的振动不衰减,并记下振动次数以表达时间,采用了擒纵机构(见机械钟表机构)。在每一个振动周期中,擒纵机构定期地向摆轮游丝调速系统传递一次或两次冲量,借以补充振动过程中所消耗的能量。在传递冲量过程中还伴随着碰撞。摆轮游丝调速系统在每次获得能量补充之前,先行释放擒纵机构,使之开始工作。在进行释放时,擒纵机构消耗了摆轮游丝调速系统一部分能量,也即对调速系统作用以负的冲量。擒纵机构所作用的所有冲量(正的和负的),实质上都是一些非线性干扰力矩。根据艾里定理,这些冲量必然会对振动周期产生影响,且其影响随着振幅变化而异。如果擒纵机构在一个周期中传递两次冲量(大多数钟表都是如此),则由此而引起的等时性误差是振幅减小时钟表趋于走慢。如果擒纵机构在一个周期中传递一次冲量,则其等时性误差的变化趋势,视冲量在振动系统平衡位置前后分布的情况而定。航海天文钟就是利用这个特点,调整冲量的分布以获得最小的等时性误差。 ⑨圆弧误差:摆钟独有的一种等时性误差,当钟摆振动时,如果它的重心运动轨迹是一条摆线的话,那么周期就与振幅无关,即不具有等时性误差;如果重心运动轨迹是一段圆弧,那么由重力所产生的恢复力矩则随摆的角位移按正弦规律变化。由摆的这种非线性恢复力矩所引起的等时性误差就称为圆弧误差。当振幅减小时,由圆弧误差引起的等时性误差是使摆的周期减短,即摆钟有走快的趋势。在实际中,即使采用特殊的摆钟悬挂装置,也很难保证摆的重心运动轨迹是一条摆线,因此所有摆钟都程度不同地存在圆弧误差。 位置误差 由于重力的影响,钟表在改变位置姿态时引起的走时误差。钟在正常使用时的放置姿态是固定的,所以走时不受位置误差的影响。表则不然,它在使用时位置经常改变,因此位置误差会对走时产生影响。位置误差通常只用于衡量表的走时精度。位置误差的大小以不同位置之间日差值的变化来衡量。测量时的不同位置,是根据有关标准按表的类别(如手表、怀表等)和精度等级&&&[2]&&&
上一篇文章:&&&&&&
下一篇文章:
本站所收集信息资料为网络转载 版权属各作者 并已著明作者 旨在资源共享、交流、学习之用,请勿用于商业用途,本站并不保证所有信息、文本、图形、链接及其它内容的绝对准确性和完整性,故仅供访问者参照使用。
Mail: Copyright by ;All rights reserved.}

我要回帖

更多关于 摆的等时性原理 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信